Expectation Consistent Free Energies for Approximate Inference
نویسندگان
چکیده
We propose a novel a framework for deriving approximations for intractable probabilistic models. This framework is based on a free energy (negative log marginal likelihood) and can be seen as a generalization of adaptive TAP [1, 2, 3] and expectation propagation (EP) [4, 5]. The free energy is constructed from two approximating distributions which encode different aspects of the intractable model such a single node constraints and couplings and are by construction consistent on a chosen set of moments. We test the framework on a difficult benchmark problem with binary variables on fully connected graphs and 2D grid graphs. We find good performance using sets of moments which either specify factorized nodes or a spanning tree on the nodes (structured approximation). Surprisingly, the Bethe approximation gives very inferior results even on grids.
منابع مشابه
Approximate inference techniques with expectation constraints
This article discusses inference problems in probabilistic graphical models that often occur in a machine learning setting. In particular it presents a unified view of several recently proposed approximation schemes. Expectation consistent approximations and expectation propagation are both shown to be related to Bethe free energies with weak consistency constraints, i.e. free energies where lo...
متن کاملBelief Propagation, Mean-field, and Bethe approximations
This chapter describes methods for estimating the marginals and maximum a posteriori (MAP) estimates of probability distributions defined over graphs by approximate methods including Mean Field Theory (MFT), variational methods, and belief propagation. These methods typically formulate this problem in terms of minimizing a free energy function of pseudomarginals. They differ by the design of th...
متن کاملExpectation Propogation for Approximate Inference in Dynamic Bayesian Networks
We describe expectation propagation for ap proximate inference in dynamic Bayesian net works as a natural extension of Pearl's ex act belief propagation. Expectation propa gation is a greedy algorithm, converges in many practical cases, but not always. We de rive a double-loop algorithm, guaranteed to converge to a local minimum of a Bethe free energy. Furthermore, we show that stable fixe...
متن کاملEquitable Partitions of Concave Free Energies
Significant progress has recently been made towards formalizing symmetry-aware variational inference approaches into a coherent framework. With the exception of TRW for marginal inference, however, this framework resulted in approximate MAP algorithms only, based on equitable and orbit partitions of the graphical model. Here, we deepen our understanding of it for marginal inference. We show tha...
متن کاملExpectation Propagation for Approximate Inference: Free Probability Framework
We study asymptotic properties of expectation propagation (EP) a method for approximate inference originally developed in the field of machine learning. Applied to generalized linear models, EP iteratively computes a multivariate Gaussian approximation to the exact posterior distribution. The computational complexity of the repeated update of covariance matrices severely limits the application ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004